Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37669865

ABSTRACT

SARS-CoV-2 induces major cellular lipid rearrangements, exploiting the host's metabolic pathways to replicate. Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that control lipid metabolism. SREBP1 is associated with the regulation of fatty acids, whereas SREBP2 controls cholesterol metabolism, and both isoforms are associated with lipid droplet (LD) biogenesis. Here, we evaluated the effect of SREBP in a SARS-CoV-2-infected lung epithelial cell line (Calu-3). We showed that SARS-CoV-2 infection induced the activation of SREBP1 and SREBP2 and LD accumulation. Genetic knockdown of both SREBPs and pharmacological inhibition with the dual SREBP activation inhibitor fatostatin promote the inhibition of SARS-CoV-2 replication, cell death, and LD formation in Calu-3 cells. In addition, we demonstrated that SARS-CoV-2 induced inflammasome-dependent cell death by pyroptosis and release of IL-1ß and IL-18, with activation of caspase-1, cleavage of gasdermin D1, was also reduced by SREBP inhibition. Collectively, our findings help to elucidate that SREBPs are crucial host factors required for viral replication and pathogenesis. These results indicate that SREBP is a host target for the development of antiviral strategies.


Subject(s)
COVID-19 , Inflammasomes , Humans , SARS-CoV-2 , Sterol Regulatory Element Binding Protein 1 , Lipid Metabolism
2.
Org Med Chem Lett ; 2(1): 3, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22373524

ABSTRACT

BACKGROUND: Herpes simplex virus type-1 (HSV-1) is the primary cause of facial lesions (mouth, lips, and eyes) in humans. The widespread use of acyclovir and nucleoside analogues has led to emergence of HSV strains that are resistant to these drugs. Recently, non-nucleoside anti-HSV compounds have received considerable attention. 1,6-Naphthyridines are a class of heterocyclic compounds that exhibit a broad spectrum of biological activities such as inhibitor of HIV-1 integrase, HCMV, FGF receptor-1 tyrosine kinase, and the enzyme acetylcholinesterase. We previously reported the synthesis, SAR studies, and evaluation anti-HSV-1 activity of 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines. In the course of our search for new 1,6-naphthyridines derivatives with potential activity against HSV-1, we have synthesized and evaluated new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines (1a-k) and 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines (2a-c). RESULTS: A known synthetic approach was used for preparing new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines (1a-k) and 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines (2a-c), starting from ethyl 4-chloro-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (7). All compounds were identified by FTIR, 1H NMR, and mass spectrometry. The antiviral effect on HSV-1 virus replication was determined. CONCLUSIONS: The compounds 1d, 1f, 1g, and 1h exhibited the highest anti-HSV-1 activity. In general, 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridines were more effective inhibitors than their corresponding 3H-pyrido[2,3-b]pyrazolo[3,4-h]-1,6-naphthyridines. The compound 1h reduced the virus yield in 91% at 50 µM and exhibited a low cytotoxicity (CC50 600 µM).

SELECTION OF CITATIONS
SEARCH DETAIL
...